
New UML 2.0 based models to design WAP applications
Ricardo Soto De Giorgis

School of Informatic Engineering, Pontifical Catholic
University of Valparaíso, Chile

56 32 273762

ricardo.soto@ucv.cl

Nibaldo Rodríguez Agurto
School of Informatic Engineering, Pontifical Catholic

University of Valparaíso, Chile
56 32 274095

nibaldo.rodriguez@ucv.cl

ABSTRACT
Wireless mobile applications are becoming more and more
popular, mobile Internet technologies, such as WAP (Wireless
Application Protocol), are important for anytime, anywhere
computing. Although much progress has been made in terms of
technological innovation, the modeling activities of WAP
applications are still underdeveloped, today practically do not
exist models specifically designed for the WAP applications
development process.
In this paper we present two new UML 2.0 [1] based models
called Decks Navigational Model and Cards Navigational Model,
both for the design steps of the application, which we can use to
design WAP systems improving the WAP applications
development process.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Design Tools and Techniques –
Flow charts, Object-oriented design methods.

General Terms
Design.

Keywords
Software Engineering, Hypermedia, UML, Mobile Internet,
WAP.

1. INTRODUCTION
The emergence of mobile Internet technologies and the evolution
of wireless devices, that provides huge benefits like anytime and
anywhere computing; have increased the development of WAP
applications. Though, the WAP applications development process
is extremely complex. likewise it exist few models appropriately
to this kind of software, driving to the developers to the omission
of the structural design of the application. This big difficulty
generally gives a low quality application and makes it susceptible
of later corrections.

As consequence, the maintenance stage continues being a
problem. Not to have the suitable documentation of the
application means to transform this process into an exhausting
task.
The solution of these problems starts with the creation of a
suitable task planning before the application construction. To get
this, we need define development methodologies that use models
and formal design structures, specially oriented to WAP software.
At the present time WAP system are built using tools that support
only the implementation stage, ignoring the important previous
process of analysis and design of the structural navigation and
interface aspects. Some others approaches have proposed the use
of web methodologies, like UWE (UML-based Web Engineering)
[2,3,4], OOHDM (Object Oriented Hypermedia Design Method)
[5], Conallen [6] or WSDM (Web Site Design Method) [7] to
built WAP applications. But there exist outstanding differences
between web and WAP systems that carry us to propose models
specifically made to design WAP applications.
In this paper we focus in the issues involved in developing
appropriated models to design WAP applications. We use the new
features provided by UML 2.0 to propose two new UML 2.0
based models called Decks Navigational Model and Cards
Navigational Model, which we will use in the design steps of the
WAP development process.
This paper is structured as follows: First, Section 2 presents an
overview of UML 2.0. Section 3 presents our two new UML 2.0
based models for WAP applications, using a study case. Section 4
a sketch of the study case implementation, and finally presents
some concluding remarks and an overview of future work.

2. UML 2.0 METHODOLOGY OVERVIEW
UML is a general purpose notational language for specifying and
visualizing complex software, especially large object-oriented
projects. UML has emerged as the software language for analysts,
designers, and programmers alike, because gives everyone from
business analyst to designer to programmer a common vocabulary
to talk about software design.
This common vocabulary is provided by means thirteen types of
diagrams, divided into two major categories: Structure diagrams
and Behavior Diagrams [12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
The 5th Aspect-Oriented Modeling Workshop’04, October 11–15, 2004,
Lisboa, Portugal. Copyright 2004 ACM 1-58113-000-0/00/0004.

2.1 Structure diagrams
Class Diagram: a diagram that shows a collection of declarative
(static) model elements, such as classes, types, and their contents
and relationships.
Component Diagram: a diagram that shows the organizations
and dependencies among components.

Object Diagram: a diagram that encompasses objects and their
relationships at a point in time. An object diagram may be
considered a special case of a class diagram or a communication
diagram.
Deployment Diagram: a diagram that depicts the execution
architecture of systems. It represents system artifacts as nodes,
which are connected through communication paths to create
network systems of arbitrary complexity. Nodes are typically
defined in a nested manner, and represent either hardware devices
or software execution environments.
Package Diagram: a diagram that depicts how model elements
are organized into packages and the dependencies among them,
including package imports and package extensions.

Composite Structure Diagram: a diagram that depicts the
internal structure of a classifier, including the interaction points of
the classifier to other parts of the system. It shows the
configuration of parts that jointly perform the behavior of the
containing classifier. The architecture diagram specifies a set of
instances playing parts (roles), as well as their required
relationships given in a particular context.

2.2 Behaviors diagrams
Activity Diagram: a diagram that depicts behavior using a
control and data-flow model.

Use Case Diagram: a diagram that shows the relationships
among actors and the subject (system), and use cases.
State Machine Diagram: a diagram that depicts discrete behavior
modeled through finite state-transition systems. In particular, it
specifies the sequences of states that an object or an interaction
goes through during its life in response to events, together with its
responses and actions.
Sequence Diagram: a diagram that depicts an interaction by
focusing on the sequence of messages that are exchanged, along
with their corresponding event occurrences on the lifelines.

Interaction Overview Diagram: a diagram that depicts
interactions through a variant of activity diagrams in a way that
promotes overview of the control flow. It focuses on the overview
of the flow of control where each node can be an interaction
diagram.
Collaboration Diagram: a diagram that gives a specification of
how an operation or classifier, such as a use case, is realized by a
set of classifiers and associations playing specific roles used in a
specific way.
Timing Diagram: An interaction diagram that shows the change
in state or condition of a lifeline (representing a Classifier
Instance or Classifier Role) over linear time. The most common
usage is to show the change in state of an object over time in
response to accepted events or stimuli.

2.3 Why UML 2.0?
Now due to UML 1.x was essentially designed for analysis and
modeling of small-scale software, in June 2003 OMG
standardizes the UML 2.0, completing the definition of this major
upgrade of the industry standard modeling notation. UML 2.0 has
been revised to better meet the real challenges of systems
engineers and software developers by providing better scalability
and enhanced support component based development, architecture
modeling, and dynamic behavior descriptions.

3. STUDY CASE
In order to explain the use of our proposed models, a generic M-
Commerce application will be used. This application will be
designed using the standard UML 2.0 extension mechanisms and
it will be constructed for mobile systems using WML and PHP.
In this study case we will focus in the design steps of the
application. To develop a correctly design we will decompose this
stage in three steps:

• Conceptual design

• Navigational design

• Presentational design
Each one has as result a model. Conceptual design produces a
class diagram; navigational and presentational design produce our
proposed models, the Decks Navigational Model and the Cards
Navigational Model, respectively. Figure 1 shows the steps
involved and the diagrams/models used in the design stage of the
application.

Conceptual
Design

Navigational
Design

Presentational
Design

Class
Diagram

Decks
Navigational

Model

Cards
Navigational

Model

Design Stage

Figure 1. Steps involved and the diagrams/models used in the

design stage of the application.

3.1 Conceptual Design
The aim of the conceptual design is to capture the domain
semantics, including all the concepts that are relevant for the
application and for the different users that have been identified.
To achieve this purpose we need to construct a class diagram,
which will be the result of the conceptual design step.

3.1.1 Class Diagram
The class diagram gives an overview of a problem domain. To
obtain this model, it will be necessary to identify classes,
attributes, methods and relations. Therefore, by means of well-
known object oriented techniques such associations,
compositions, aggregations and generalization a logical structure
able to represent in correct way the problem domain it will be
defined.

It is important to consider as an essential pre-condition to get an
appropriate class diagram, a careful analysis, ideally done using
use cases and scenarios [11].

The class diagram shown in the figure 2, models a customer order
from a retail catalogue.

The principal class is the Order, associated with it is the Customer
making the Payment. A Payment is one of three kinds: Cash,
Check, or Credit. The Order contains OrderDetails, each with its
associated Item.

Figure 2. Class diagram of the study case.

3.2 Navigational Design
Navigational design is a critical step in the design of hypermedia
applications. One of the main difficulties is to establish a
navigational structure that allows the user to navigate in an
intuitive way and to avoid him losing the orientation. In order to
obtain this, we need design a hierarchical navigation structure,
being careful with the nodes and navigation among them.
Moreover, we must remember that the navigation model is a
valuable document of the maintenance step.
In this step we will propose the use of our new models: The
Decks Navigational Model and the Cards Navigational Model.
Both models are built with UML 2.0 standard model elements
defined according to the standard UML 2.0 extension mechanisms
[12].

3.2.1 Cards, Decks and WML.
The markup language used for WAP is WML. WML uses tags
and the syntax is stricter and conforms to the XML 1.0 standard
[13]. WML pages are called decks. They are constructed as a set
of cards, related to each other with links.

The minimum development unit designing WML pages is the
card. One deck may contain a lot of cards. Though, in the WAP-
browser always it will be displayed only one card. The user can
navigate from one card to each other, to visualize card contents.

A set of cards compose a deck. The deck is the minimum
transmission unit between the server and the mobile system.
When the mobile system receives the deck, it will display the first
card of the deck. So, the navigation is done always among the
different cards of the deck until a new deck is loaded.

3.2.2 Decks Navigational Model
The Decks Navigational Model is an organized representation of
the set of decks of the application. The aim of this model is to
achieve an intuitive and hierarchical navigational structure of all
decks involved in the application.
Figure 3 shows The Decks Navigational Model of our study case.
From this model we can easily understand the navigation between
decks.
The starting point of the navigation is the MainMenu Deck,
located there the user can selected the item to buy, log-in or
register. When the customer has selected the item, he can see its
details navigating to ItemDetail. Once the customer has chosen
the item he adds it to the ShoppingCart and then he can pay for it
navigating to the Payment Deck.
Each node contains the stereotype “<<deck>>” to explicit the
kind of the node in the model. Each reference contains the
stereotype “<<opens>>”, to explicit that the first deck of the
relation calls the target deck allowing the navigation.

Figure 3. The Decks Navigational Model of the study case.

3.3 Presentational Design
Presentational design gives an abstract representation of the final
interface and defines the interaction between the user and
navigational nodes. In order to obtain this, we propose the use of
The Cards Navigational Model.

3.3.1 Cards Navigational Model
The Cards Navigational Model is an abstract representation of the
set of cards of the application. The aim of this model is to achieve
a clearly representation of each card to simplify the
implementation of the application. This model not consider
decisions about details like sizes, colors, fonts or other specific
objects of interface, because they belong to the implementation
stage.

3.3.2 Stereotyped Objects
Cards contain a lot of elements, each element performs different
actions over the system, and all these must be correctly
represented in the presentational design. The Cards Navigational
Model uses a set of stereotyped interface object to represent
clearly all the elements of the final interface of the decks; these
stereotypes have been defined according to the standard UML 2.0
extension mechanisms. Table 1 explains the stereotypes for
interface objects used in the model.

Table 1. Stereotypes for interface objects

Stereotype Name Representation
<<txt>> text Represents a sequence of characters with formatting information
<<im>> image Represents an image, generally in wbmp format
<<anc. txt>> anchored text Represents an text object with a hyperlink
<<anc. im>> anchored image Represents an image object with a hyperlink
<<col. txt>> text collection Represents a set of text objects, as a result of a query executed.
<<col. anc txt. >> anchored text collection Represents a set of anchored text objects, as a result of a query executed.
<<button>> button Represents a clickeable area, which has an action associated.
<<txt. box>> text box Represents an input field where the user can introduce information.
<<chk box>> check box Represents an input field where the user can check an option
<<col. txt. box>> text box collection Represents a set of text box objects
<<col. chk box>> check box collection Represents a set of check box objects

Figure 4 shows The Cards Navigational Model of our study case.
From this model we can easily understand the objects layout on
the deck and the whole navigational structure.
In this model each card and each interface object has an identifier
between “{}” characters. Using this identifier it is possible to
recognize the target card when starting navigation, for example, in
the card MainMenu the interface object ”<<anc .txt>>{2} ” is

identified with 2, which indicates that object interface carry us to
the card with identifier 2 (SelectItem). Therefore the complete
information of all the system navigation is contained in the model.
Furthermore, using the stereotypes, the presentational design of
the interfaces also is included in the model.
Presentational design is done by means interface objects, for
example, MainMenu card has one interface object text and three

interface objects anchored text. The interface object text
corresponds to the title of the card, which may be “Retail
Catalog”. The first anchored text is a hyperlink to the card called
SelectedItem, the second anchored text is a hyperlink to the card
called LogIn and the last one is a hyperlink to the card called
Register.

All cards contains the stereotype “<<card>>” to explicit the kind
of the node in the model. Each reference contains the stereotype
“<<navigate>>”, to explicit that contains a hyperlink to navigate
from each card to each other through the reference.

Figure 4. The Cards Navigational Model of the study case.

4. IMPLEMENTATION
In this section a sketch of the implementation of our study case
will be given, mainly to understand some advantages that our
models provides at the implementing time of the application:

• The clarity of the navigation model allows us to easily
understand the system navigation and therefore a fast
construction of the links between cards.

• The similarity between the abstract interfaces depicted in
the card navigational model and the final interfaces allows
us to easily understand the interface objects layout inside
the screen

• The simplicity of the model and the abstract interfaces
reduces the learning period in being able to use the
methodology

• The modeling techniques and notation used in the models

presented in the previous section are entirely based on the
UML 2.0, a well-known standard and supported by many
case tools.

• The previous aspects help us to reduce resources needed and
time used in the application development.

Figure 5 shows the similarity between abstract interfaces of the
cards navigational model and final interfaces. In addition we can
easily compare and understand the navigation depicted by the
proposed navigational models

Figure 4. The Cards Navigational Model of the study case.

5. CONCLUSIONS AND FUTURE WORK
WAP applications are inherently complex and require
thoughtful design and planning. However hypermedia
applications that are systematically designed, using ad-hoc
models, require less cycles of improvement and give better
results.
In this paper we presented two new UML 2.0 based model
called Decks Navigational Model and Cards Navigational
Model for the design stage of the WAP applications, which
supports navigational and presentational design steps,
respectively. The use of these models provides benefits such as
clarity, simplicity to understand the system domain reducing
resources needed and time used in the application development.
Our future work will be centered on refining the models here
presented and working in the other phases of the WAP
applications development process: requirements gathering,
analysis, implementation, maintenance and quality control.
Mainly to obtain experience to develop patterns and a tool
CASE that allows us to simplify still more, the whole life cycle
of WAP systems.

6. REFERENCES
[1] The Object Management Group (OMG). “Unified

Modeling Language”.http://ww.uml.org, last updated
March 2004.

[2] Rolf Hennicke, Nora Koch. “A UML-based Methodology
for Hypermedia Design”, Proceedings of the Unified
Modeling Language Conference, UML ‘2000 Evans A.
And Kent S. (Eds.). LNCS 1939, Springer Verlag, 410-424.

[3] Nora Koch. “Software Engineering for Adaptive
Hypermedia Applications”, 2001, PhD. Thesis, Reihe
Softwaretechnik 12, Uni-Druck Publishing Company,
Munich.

[4] Nora Koch, A. Kraus and R Hennicker. “The Authoring
Process of the UML-based Web Engineering Approach”, In
First International Workshop on Web-Oriented Software
Technology IWWOST'2001, 2001, Valencia.

[5] Schwabe D., and Rossi G. “An object-oriented approach to
Web-based application design. Theory and Practice of
Object Systems (TAPOS)”, (October 1998), 207-225.

[6] J. Conallen. “Building Web Applications with UML”,
Addison Wesley, 1999

[7] O. De Troyer and C. Leune. WSDM . “a User-Centered
Design Method for Web Sites”, Proceedings of the 7th
International World Wide Web Conference, 1997.

[8] The Object Management Group (OMG). “Model Driven
Architecture”. http://www.omg.org/mda/, last updated
March 2002.

[9] The Object Management Group (OMG). “UML 2.0
Infrastructure Specification”. http://www.uml.org, last
updated March 2004.

[10] The Object Management Group (OMG). “MDA Guide
1.0.1 2003”. http://www.uml.org/mda/.

[11] D.Leffingwell & D.Widring, “Managing Software
Requirement. A Use Case Approach”, Pearson Education,
Boston, 2003.

[12] The Object Management Group (OMG). “UML 2.0
Superstructure Final Adopted specification”.
http://www.uml.org.

[13] WAP Forum DTDs
http://www.openmobilealliance.org/tech/DTD/index.htm

